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Abstract

A new algorithm for finding a maximum clique in an undirected graph is

described. An approximate coloring algorithm has been improved and used

to provide bounds to the size of the maximum clique in a basic algorithm

which finds a maximum clique. This basic algorithm was then extended to

include dynamically varying bounds. The resulting algorithm is significantly

faster than the comparable algorithm.
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1 Introduction

A clique is a subset S of vertices in a graph G such that each pair of vertices

in S is connected by an edge. The maximum clique problem is the problem

of finding in a given graph the clique with the largest number of vertices.

The algorithms for finding a maximum clique are frequently used in chem-

ical information, bioinformatics and computational biology applications [1],

where their main application is to search for similarity between molecules.

These algorithms are used for screening databases of compounds to filter

out molecules that are similar to known biologically active molecules and

are feasible to be active themselves [2]. Also, these algorithms are used

for comparing protein structures, to provide the information about protein

function [3] and also the information about possible interactions between

proteins [4, 5].

Searching for the maximum clique is often the bottle-neck computational

step in these applications. The maximum clique problem is NP-hard [6], and

probably no polynomial time algorithm will be possible, but improvements to

the existing algorithms can still be effective. Exact algorithms, which can be

guaranteed to find the maximum clique, usually use a branch-and-bound ap-

proach to the maximum clique problem [7, 8, 9, 10], searching systematically

through possible solutions and applying bounds to limit the search space.

The tightest bounds come from the vertex-coloring method. This method

assigns colors to vertices, so that no two adjacent vertices of a graph G are

colored with the same color. The number of colors is the upper bound to the

size of the maximum clique in graph G. Vertex-coloring is also known to be

NP-hard [6], so a graph can only be colored approximately.

In this paper, we present improvements to an approximate coloring algo-

rithm [8]. We use this algorithm in a basic algorithm for finding a maximum

clique [7, 8], where the coloring algorithm provides upper bounds to the size

of the maximum clique. The effects on the speed of the maximum clique algo-
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rithm of varying the tightness of upper bounds dynamically during the search

are investigated experimentally. We make use of this concept of varying up-

per bounds to enhance the performance of this algorithm in agreement with

our modified approximate coloring algorithm. The idea is that the tightest

and the most computationally demanding upper bounds should be calculated

close to the root of the recursion tree of the branch-and-bound algorithm,

while on subsequent levels, where the majority of the search takes place,

more relaxed and less computationally expensive bounds should be used.

Our algorithm has been tested on random graphs and benchmark graphs,

which were developed as part of the Second DIMACS Challenge [11], and

is compared to the recent leading algorithm [8]. The improvements to the

approximate coloring algorithm, together with the dynamical use of upper

bounds, reduce the number of steps required to find the maximum clique and

improve the run time of the algorithm by as much as an order of magnitude

on dense graphs, while preserving its superior performance on sparse graphs.

2 Theory

2.1 Notations

An undirected graph G = (V, E) consists of a set of vertices V = {1, 2, ..., n}
and a set of edges E ⊆ V × V . Two vertices v and w are adjacent, if there

exists an edge (v, w) ∈ E. For a vertex v ∈ V , a set Γ(v) is the set of all

vertices w ∈ V that are adjacent to the vertex v. |Γ(v)| is the degree of vertex

v. The maximum degree in G is denoted as Δ(G). Let G(R) = (R,E∩R×R)

be the subgraph induced by vertices in R, where R is a subset of V . The

density of a graph is calculated as D = |E|/(|V | · (|V | − 1)/2). The number

of vertices in a maximum clique is denoted by ω(G).
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2.2 The basic algorithm

A well known basic algorithm for finding a maximum clique [8] (MaxClique)

is shown in Figure 1.

Procedure MaxClique(R, C)
1. while R �= ∅ do
2. choose a vertex p with a maximum color C(p) from set R;
3. R := R\{p};
4. if |Q| + C(p) > |Qmax| then
5. Q := Q ∪ {p};
6. if R ∩ Γ(p) �= ∅ then
7. obtain a vertex-coloring C ′ of G(R ∩ Γ(p));
8. MaxClique(R ∩ Γ(p), C ′);
9. else if |Q| > |Qmax| thenQmax := Q;

10. Q := Q\{p};
11. else return
12. end while

Figure 1. The basic maximum clique algorithm.

The algorithm MaxClique maintains two global sets Q and Qmax, where

Q consists of vertices of the currently growing clique and Qmax consists of

vertices of the largest clique currently found. The algorithm starts with an

empty set Q, and then recursively adds vertices to (and deletes vertices from)

this set, until it can verify that no clique with more vertices can be found.

The next vertex to be added to Q is selected from the set of candidate vertices

R ⊆ V , which is initially set to R := V . At each step, the algorithm selects

a vertex p ∈ R with the maximum color C(p) among the vertices in R, and

deletes it from R. C(p) is the upper bound to the size of the maximum clique

in the resulting set R. If the sum |Q| + C(p) indicates that a clique larger

than the one currently in Qmax can be found in R, then vertex p is added to

the set Q. The new candidate set R ∩ Γ(p) with the corresponding vertex-

coloring C ′ is calculated and then passed as parameters to the recursive call

to the MaxClique procedure. If Rp = ∅ and |Q| > |Qmax|, i.e., the current

clique is larger than the currently largest clique found, then the vertices of
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Q are copied to Qmax. The algorithm then backtracks by removing p from

Q and then selects the next vertex from R. This procedure continues until

R = ∅.

2.3 Approximate coloring algorithm

The approximate coloring algorithm introduced in Tomita and Seki (2003),

provides vertex-coloring in the MaxClique algorithm. All vertices are colored

in the candidate set one by one in the order in which they appear in this set.

The algorithm inserts each vertex v ∈ R into the first possible color class Ck,

so that v is non-adjacent to all the vertices already in this color class. If the

current vertex v has at least one adjacent vertex in each color class C1, ..., Ck,

then a new color class Ck+1 is opened and vertex v is inserted here. After

all vertices in R have been assigned to their respective color classes, these

vertices are then copied from the color classes as they appear in each color

class Ck, and in the increasing order with respect to index k, back to R. In

this process, a color C(v) = k is assigned to each vertex v ∈ R. The outputs

of the algorithm are the new set R and the vertex-coloring C, where colors

in the set C correspond to vertices in R.

The number of color classes, which is the upper bound to the size of the

maximum clique in the graph induced by R, depend heavily on how vertices

are presented to this algorithm. The upper bound is tighter (lower), when

vertices in R are considered in a non-increasing order with respect to their

degree in G [8, 12].

2.4 Improved approximate coloring algorithm

We have improved the algorithm described above, which is referred to as the

original approximate coloring algorithm, so as to maintain the non-increasing

order of vertices in the candidate set R. This means that the order of vertices
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in R after the application of our coloring algorithm to this set is the same to

the order of vertices in R prior to the algorithm start. This is not the case

with the original approximate coloring algorithm, which orders the vertices

in R by their colors, so that the MaxClique algorithm can at each step select

a vertex with a maximum color from the set R, which is conveniently the last

vertex in this set. We observe that vertices v ∈ R with colors C(v) < |Qmax|−
|Q| + 1, need not be ordered by their colors as the MaxClique algorithm

will never add these vertices to the current clique Q (line 4, Figure 1). An

inherent property of these vertices is that their colors are lower than a certain

color, which we denote kmin. We introduce a counter j of such vertices. At

the start of the approximate coloring algorithm we calculate color kmin :=

|Qmax| − |Q| + 1 and we set j := 0. If kmin ≤ 0, then we set kmin := 1,

because colors are positive numbers. When in the loop a vertex v at the

i − th position in R is assigned to a color class Ck, we test if k < kmin for

this vertex. If this is so, then we shift this vertex v from the i − th to the

j− th position in R and we increase j by 1. When the assignment of vertices

to color classes is complete, vertices with colors k < kmin are at the front of

the set R in their initial non-increasing order with respect to their degrees in

G. The remaining vertices are copied from color classes Ck, where k ≥ kmin,

back to R as they appear in each color class Ck and in increasing order with

respect to index k. Here, only these vertices are assigned colors C(v) = k.

This algorithm ColorSort is shown in Figure 2.

2.5 Coloring example

Figure 3 depicts an undirected graph. The candidate set of vertices in

the non-increasing order with respect to their degrees (in parentheses) is

R = {7(5), 1(4), 4(4), 2(3), 3(3), 6(3), 5(2), 8(2)}. This set is the input to the ap-

proximate coloring algorithm. In Table 1 vertices of the example graph are

assigned to color classes; this procedure is the same for both approximate

coloring algorithms.
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Procedure ColorSort(R,C)
1. max no := 1;
2. kmin := |Qmax| − |Q| + 1;
3. if kmin ≤ 0 then kmin := 1;
4. j := 0;
5. C1 := ∅; C2 := ∅;
6. for i := 0 to |R| − 1 do
7. p := R[i]; {the i-th vertex in R}
8. k := 1;
9. while Ck ∩ Γ(p) �= ∅ do

10. k := k + 1;
11. if k > maxno then
12. maxno := k;
13. Cmaxno+1 := ∅;
14. end if
15. Ck := Ck ∪ {p};
16. if k < kmin then
17. R[j] := R[i];
18. j := j + 1;
19. end if
20. end for
21. C[j − 1] := 0;
22. for k := kmin to max no do
23. for i := 1 to |Ck| do
24. R[j] := Ck[i];
25. C[j] := k;
26. j := j + 1;
27. end for
28. end for

Figure 2. Improved approximate coloring algorithm.
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Figure 3. Example of an undirected graph. A maximum clique (ω = 3) is
depicted with its edges emphasized.

After assigning vertices to color classes, the original coloring algorithm copies

vertices from these classes back to the candidate set, which becomes R =

{7(5), 5(2), 1(4), 6(3), 8(2), 4(4), 2(3), 3(3)} with the respective coloring C = {1, 1,
1, 2, 2, 3, 3, 3}. Compared to the set R at the start of this coloring algorithm

in this new set R vertices are less ordered with respect to their degrees. We

expect that when the original coloring algorithm is used with the MaxClique

algorithm, the disorder of vertices in the resulting candidate sets will accu-

mulate on the following levels of the recursion. The original approximate

coloring algorithm no longer considers vertices which are sorted by their de-

grees, which is not efficient.

In the case of our ColorSort algorithm, we set as an example |Qmax| := 2

and |Q| := 0. kmin is calculated by kmin := 2 − 0 + 1 = 3. In the

loop where the assignment of vertices to color classes takes place, our al-

gorithm shifts vertices with colors k < 3 to the front of the set R. After

all the vertices have been assigned to color classes, the partial new candi-

date set is R = {7, 1, 6, 5, 8}. The remaining vertices are in color classes

with k ≥ 3, and in this case only vertices from the color class C3, are
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Table 1. Vertices of the example graph assigned to color classes with the
approximate coloring algorithm. In each row are vertices of the color class
Ck, where index k ∈ N is a color of these vertices. The degrees are in
parentheses.

k Ck

1 7(5) 5(2)

2 1(4) 6(3) 8(2)

3 4(4) 2(3) 3(3)

copied to R in the order in which they appear in this color class. The fi-

nal candidate set is then R = {7(5), 1(4), 6(3), 5(2), 8(2), 4(4), 2(3), 3(3)} and the

coloring C = {−,−,−,−,−, 3, 3, 3}, where a − indicates that no color has

been assigned to the corresponding vertex in set R. It can be seen that

the vertices in this candidate set {7(5), 1(4), 6(3), 5(2), 8(2)} are now in decreas-

ing order with respect to their degree, in contrast to the set R obtained

with the original approximate coloring algorithm, where the same vertices

{7(5), 5(2), 1(4), 6(3), 8(2)} are not ordered. In our computational experiments

on various graphs, the number of vertices in the candidate sets with k < kmin

is on average much higher than number of vertices where the opposite is true.

Therefore initial non-increasing order is maintained for most vertices in these

candidate sets.

2.6 Dynamic coloring

Until now, in the MaxClique algorithm the calculation of the degrees and

sorting of vertices was performed only once with the initial set of vertices

V . The coloring algorithms considered vertices in the candidate set R sorted

by their degrees in G. An alternative to this is to recalculate at each and

every step of the MaxClique algorithm the degrees of vertices in R in the

graph induced by these vertices, i.e., G(R), and sort these vertices in a non-

increasing order with respect to their degrees in G(R). Then the ColorSort

algorithm considers vertices in R sorted by their degrees in the induced graph
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G(R) rather than in G. The upper bounds given by this coloring algorithm

are then as tight as possible with this approach. The number of steps required

to find the maximum clique is reduced to the minimum, but the overall

running time of the MaxClique algorithm does not improve, because of

the computational expense O(|R|2) of the determination of the degrees and

sorting of vertices in R.

We assume that improvement in the performance can be achieved by sorting

vertices by their degrees in G(R) only when the candidate set R is suffi-

ciently large. Obviously, set R is larger on initial levels of the MaxClique

algorithm. With the level of the MaxClique algorithm we denote the num-

ber of branches (recursive calls) from the root to the current leaf of the

recursion tree. This is because, for large candidate sets the computational

expense related to the computation of tighter bound is much smaller than

the cost of investigating false solutions, which arise when applying less tight

bounds. The same is not true for small candidate sets, where tighter bounds

are much less effective in reducing the redundant searching and the compu-

tational expense related to the calculation of tighter upper bounds becomes

significant.

The number of levels up to which the calculation of the degrees and sorting

improves the speed of the maximum clique algorithm has to be determined

dynamically, during the search for the maximum clique. For example, in

dense graphs, maximum cliques are generally larger than in sparse graphs

of equal size. We expect that the number of levels up to which tighter

bounds should be used will be higher for dense than for sparse graphs. We

also expect that for large graphs this number will be higher than for small

graphs of equal density, as larger maximum cliques are generally found in

large graphs. In Figure 4 is shown the MaxCliqueDyn algorithm, which

we explain in details below.

We introduce global variables S[level] and Sold[level], which hold the sum

of steps the MaxCliqueDyn algorithm performs from the root node up to
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Procedure MaxCliqueDyn(R,C, level)
1. S[level] := S[level] + S[level − 1] − Sold[level];
2. Sold[level] := S[level − 1];
3. while R �= ∅ do
4. choose a vertex p with maximum C(p) (last vertex) from R;
5. R := R\{p};
6. if |Q| + C[index of p in R] > |Qmax| then
7. Q := Q ∪ {p};
8. if R ∩ Γ(p) �= ∅ then
9. if S[level]/ALL STEPS < Tlimit then

10. calculate the degrees of vertices in G(R ∩ Γ(p));
11. sort vertices in R ∩ Γ(p) in a descending order
12. with respect to their degrees;
13. end if
14. ColorSort(R ∩ Γ(p), C ′)
15. S[level] := S[level] + 1;
16. ALL STEPS := ALL STEPS + 1;
17. MaxCliqueDyn(R ∩ Γ(p), C ′, level + 1);
18. else if |Q| > |Qmax| then Qmax := Q;
19. Q := Q\{p};
20. else return
21. end while

Figure 4. Maximum clique algorithm with dynamically varying upper bounds.

and including the current level and the sum of steps up to and including

the previous level, respectively. We introduce T [level], which is the fraction

of steps up to the current level among all the steps completed so far. We

recalculate T [level] = S[level]/ALL STEPS on each and every step, where

ALL STEPS is a global counter of steps, which is increased by 1 at each

step of the MaxCliqueDyn algorithm. With a new parameter, which we

call Tlimit, we can limit the use of tighter bounds to certain levels. While

T [level] < Tlimit, we perform the calculations of the degrees and sorting and

in the ColorSort algorithm we consider vertices in R sorted by their degrees

in G(R). When T [level] ≥ Tlimit, no additional calculations are performed.

At each level the MaxCliqueDyn algorithm first updates the sum of steps
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up to this level by S[level] := S[level]+S[level−1]−Sold[level] and the sum

of steps up to the previous level by Sold[level] := S[level− 1]. Each time the

algorithm advances to the next recursive level, S[level] is increased by 1. An

example of this calculation is shown in Table 2.

Table 2. Counting the steps. Columns represent levels of the recursion.
The path of the algorithm is represented by right arrows (recursive calls)
and down left facing arrows (backtracks). The notation is S[level](Sold[level]).
Number S[3] = 5 is calculated as S[3] = S[3] + S[2]− Sold[3] = 2 + 4− 2 = 4
and, because a recursive call follows (right arrow), S[3] = S[3] + 1 = 5.
Sold[3] = S[2] = 4.

level 1 2 3 . . .
1(0) → 2(1) → 2(2)

↙
2(1)

↙
2(0) → 4(2) → 5(4) →

...

2.7 Experimental determination of the Tlimit parameter

We determined the parameter Tlimit by experiments on random graphs. We

construct a random graph with n vertices by inserting an edge with prob-

ability p between each pair of its vertices. We also construct 10 graphs for

each size n and probability p, where n is in the interval 100 − 500 and p

is in the interval 0.2 − 0.99. These random graphs were then the input to

the MaxCliqueDyn algorithm. For each graph, we let MaxCliqueDyn al-

gorithm find the maximum clique multiple times, each time with a different

parameter Tlimit in the interval 0.0 to 1.0. When this parameter was set to

Tlimit = 0.0, no tight bounds were used, as opposed to when Tlimit was set

to 1.0, when the tight bounds were used at every step. We plotted the time

to find the maximum clique against Tlimit for each n and p and the scaled

plots for some of the random graphs and for some of the DIMACS graphs
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are shown in Figures 5 and 6, respectively.

All the curves for dense graphs in these plots exhibit a minimum when Tlimit

is close to 0.05. For sparse graphs the optimal Tlimit is 0.0, but in almost

all these cases the additional calculations make the algorithm less than 10%

slower (see Table 3).
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Figure 5. The graph showing the effect of varying Tlimit on the time
MaxCliqueDyn algorithm requires to find a maximum clique in random
graphs with 100, 150, and 200 vertices with p = 0.9. A logarithmic scale is
used on the x - axis.

We choose Tlimit = 0.025 as higher values of this parameter increase the time

of the calculation for sparse graphs and a lower Tlimit makes the algorithm

slower on very dense graphs. Other values of Tlimit could be chosen in an in-

terval (see Table 3) with little change in the time needed to find a maximum

clique with the MaxCliqueDyn algorithm. The choice of Tlimit depends on

the way the degrees and sorting of vertices are calculated. We calculate the

degrees from ground up and use very simple O(|R|2) implementations of the

sorting function. With this parameter set to Tlimit = 0.025, the computa-

tionally expensive calculations of degrees and sorting are performed on about

2.5% of the steps of the MaxCliqueDyn algorithm, although the true num-

ber of such steps may vary, because T [level] is calculated dynamically during

the search. Adapting to the local nature of the graph under consideration

T [level] can raise above or fall below Tlimit in the search process, thereby
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Figure 6. The graph showing the effect of varying Tlimit on the time
MaxCliqueDyn algorithm requires to find a maximum clique in some of
the DIMACS graphs. A logarithmic scale is used on the x - axis.

disallowing or permitting the calculation of tighter bounds.

Table 3. Intervals of values of the parameter T , where the run-time is within
10% of the minimum time. The sizes n are in the upper row and the proba-
bilities p of graphs are in the left-most column. Where a clear minimum was
observed, it is indicated in boldface.

p\n 100 150 200 300 500
0.2 0-1 0-0.2 0-0.2 0-0.1 0-0.03
0.3 0-0.5 0-0.2 0-0.5 0-0.03 0-0.005
0.4 0-0.2 0-0.05 0-0.035 0-0.015 0-0.02-0.1
0.5 0-0.05 0-0.03 0-0.01-0.2 0.001-0.035-0.1 0.0001-0.02-0.2
0.6 0-0.05 0-0.1 0.005-0.03-0.07 0.001-0.02-0.2 0.005-0.035-0.07
0.7 0.01-0.035-0.2 0.005-0.025-0.1 0.015-0.02-0.2 0.005-0.05-0.2 --
0.8 0.005-0.03-0.1 0.01-0.03-0.1 0.005-0.05-0.2 0.005-0.05-0.2 --
0.9 0.015-0.05-0.2 0.02-0.05-0.2 0.025-0.05-0.2 -- --
0.95 0.01-0.035-0.07 0.01-0.03-0.1 0.015-0.05-0.1 -- --
0.99 0-1 0-1 0-1 0-1 0-1

2.8 Initialization

We set Q := ∅, Qmax := ∅ and ALL STEPS := 1. The elements of sets S

and Sold are set to 0. We calculate the degrees of vertices V in graph G and

sort these vertices in a non-increasing order with respect to these degrees.
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The first Δ(G) vertices in V are colored with numbers 1...Δ(G) and the rest

of the vertices in V are assigned a color Δ(G). The first candidate set V , to-

gether with its coloring C, is then an input to the MaxCliqueDyn procedure.

This initialization follows the standard procedure described elsewhere [8].

3 Experimental results

Our MaxCliqueDyn algorithm was implemented in C. Computational ex-

periments were performed on a 1.6GHz AMD Opteron processor with Linux

operating system. We also implemented Tomita’s maximum clique finding

algorithm MCQ [8]. First, we compared the basic maximum clique algorithm

MaxClique with our improved approximate coloring algorithm ColorSort to

the MCQ algorithm. Then we compared our MaxCliqueDyn algorithm to

the MCQ algorithm on random graphs, and finally, we performed the same

comparison on DIMACS graphs. Our user times for the DIMACS machine

benchmark graphs r100.5-r500.5 are 0.00, 0.04, 0.40, 2.48, and 9.45 seconds,

respectively. We set the limit for the time available to the algorithms to

21600 seconds (= 6h).

Our improved approximate coloring algorithm ColorSort reduces the number

of steps to find the maximum clique on random graphs when compared to

the original approximate coloring algorithm, when both algorithm are used

to provide upper bounds in the basic algorithm MaxClique. The reduction

is most apparent for difficult graphs with p in the interval 0.7 − 0.95, e.g.,

for random graphs with 200 vertices and p = 0.95 the number of steps is

reduced 2.1 times. For graphs with higher or lower density the number of

steps is reduced less. However these graphs in our random test set can be

solved in very few steps and because no additional calculation is associated

with the modifications to the original approximate coloring algorithm, the

computing time decreases proportionately with the numbers of steps. The

times and numbers of steps for the MaxClique algorithm using ColorSort
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algorithm are shown in Table 4.

We have determined the effect of our dynamic calculation of upper bounds on

the performance of the MaxCliqueDyn algorithm, compared to the MCQ

algorithm on random graphs. Table 4 shows average CPU times for random

graphs obtained by both algorithms.

The data in Table 4 suggest that our MaxCliqueDyn algorithm is 1.3 − 12

times faster than the MCQ algorithm on random graphs with probabilities

in the interval 0.7 − 0.95; the speed-up tends to increase for larger graphs.

With other graphs, the difference between the algorithms is smaller. Our

algorithm is slightly slower on certain sparse graphs, where a small number

of unnecessery calculations of degrees and sorting of vertices is performed.

This is in part because T [level] does not adapt to the local properties of these

graphs.

In Table 5 we show the results of MaxCliqueDyn and MCQ algorithms on

DIMACS graphs. Because the MCQ algorithm was originally tested only

on some of these graphs [8], we tested this algorithm again. The calculation

times of our algorithm confirm that the Tlimit = 0.025 is well chosen for these

graphs, as the calculation times are close to the minimum for most of these

graphs. We solve all four very difficult brock800 family instances in under 4

hours compared to the MCQ algorithm, which solves only 2 of these instances

and requires considerably more time. We also solved the p_hat700-3 graph

in under 4 hours; in this case the MCQ algorithm fails to complete. Times

are improved for all but one graph in the brock family, where our times are

generally better by a factor 2−3. With our algorithm, p_hat1000-2 is solved

6 times faster, p_hat300-3 3 times, p_hat500-3 almost 8 times, san1000 7

times, san200_0.9_1 almost 6 times, san400_0.7_2 6 times, san400_0.9_1

31 times and sanr200_0.9 is solved almost 6 times faster.

Our maximum clique algorithm does not improve times for very dense (d ≥
0.99) graphs in the MANN family and for hamming10-2 graph.Table 5 shows

that in these cases numbers of steps are unchanged. A small number of
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Table 4. CPU times [s] and numbers of steps for random graphs; p is the
probability of an edge between two vertices of a graph with n vertices.

Graph MCQ MaxClique+CS MaxCliqueDyn+CS
n p num. steps CPU time num. steps CPU time num. steps CPU time

100 0.6 1031 0.003 978 0.00265 943 0.0028
100 0.7 2752 0.00925 2525 0.0082 1940 0.00735
100 0.8 6674 0.03 5460 0.02445 4101 0.0205
100 0.9 9279 0.0746 6655 0.05405 4314 0.0384
100 0.95 764 0.0092 712 0.00815 477 0.0061
150 0.5 2526 0.0076 2423 0.00695 2217 0.00735
150 0.6 7852 0.0278 7330 0.02525 5932 0.0238
150 0.7 30057 0.1315 27087 0.1164 20475 0.09445
150 0.8 218972 1.2913 174905 1.0368 88649 0.606
150 0.9 1570126 17.478 854110 9.863 258853 3.464
150 0.95 78246 1.7241 40081 0.88255 14825 0.40785
200 0.4 2585 0.00795 2494 0.00745 2409 0.0078
200 0.5 9774 0.0329 9355 0.0304 7695 0.03095
200 0.6 40694 0.1626 38060 0.14845 31114 0.12995
200 0.7 275430 1.383 246297 1.22485 148726 0.8599
200 0.8 3555022 25.725 2850467 20.658 1424940 11.06
200 0.9 145553091 2117.78 80498743 1199.39 16404111 279.705
200 0.95 22393742 729.479 10433846 340.077 1508657 60.524
300 0.4 15014 0.0507 14591 0.0479 12368 0.05335
300 0.5 76112 0.30745 73311 0.28725 61960 0.2634
300 0.6 641131 2.983 603540 2.767 387959 2.133
300 0.7 8521492 51.915 7669432 46.385 4548515 28.566
300 0.8 530043775 4580.5 434614352 3735 159498760 1442.01
500 0.3 23300 0.09055 22785 0.0863 19665 0.10895
500 0.4 141095 0.6202 137348 0.58595 123175 0.5817
500 0.5 1422379 7.009 1368896 6.579 963385 5.827
500 0.6 23889293 142.553 22678735 132.084 15075757 91.447
1000 0.2 45171 0.29045 44766 0.2753 41531 0.3858
1000 0.3 456758 2.386 449717 2.238 413895 2.332
1000 0.4 6192174 34.708 6040135 32.914 4332149 33.761
1000 0.5 140261760 886.465 136018698 842.86 100756405 655.6
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Table 5. CPU times [s] and numbers of steps for DIMACS benchmark graphs;
ω is the size of the largest clique found.

Graph MCQ MaxCliqueDyn
name ω num. steps CPU time ω num. steps CPU time
brock200 1 21 450327 2.74 21 229597 1.56
brock200 2 12 4232 0.017 12 3566 0.018
brock200 3 15 17089 0.088 15 13057 0.0735
brock200 4 17 64332 0.313 17 48329 0.242
brock400 1 27 326153861 2915 27 125736892 1175.68
brock400 2 29 115680020 1204.86 29 44010239 521.01
brock400 3 31 279192244 2297 31 109522985 935.23
brock400 4 33 129575982 1181.96 33 53669377 532.66
brock800 1 ≥ 23 956318168 fail 23 1445025793 14344
brock800 2 ≥ 24 1071802831 fail 24 1304457116 13507
brock800 3 25 1581256139 17050 25 835391899 9263
brock800 4 26 1105720024 13142 26 564323367 7180
c-fat200-1 12 214 0.0005 12 214 0.0005
c-fat200-2 24 239 0.001 24 239 0.0005
c-fat200-5 58 307 0.003 58 307 0.003
c-fat500-10 126 743 0.0355 126 743 0.0345
c-fat500-1 14 517 0.0015 14 517 0.002
c-fat500-2 26 542 0.0025 26 542 0.003
c-fat500-5 64 618 0.0095 64 618 0.0095
hamming6-2 32 62 0.0005 32 62 0.0005
hamming6-4 4 105 0.0005 4 105 0
hamming8-2 128 254 0.018 128 254 0.018
hamming8-4 16 41603 0.333 16 19107 0.1505
hamming10-2 512 1022 1.3 512 2048 6.63
hamming10-4 ≥ 40 16274629 fail ≥ 40 1934328 fail
johnson8-2-4 4 46 0 4 46 0
johnson8-4-4 14 255 0.001 14 221 0.001
johnson16-2-4 8 430130 0.4365 8 643573 0.681
johnson32-2-4 ≥ 16 15 fail ≥ 16 15 fail
keller4 11 12209 0.0485 11 8991 0.04
keller5 ≥ 27 162625 fail ≥ 27 25921 fail
keller6 ≥ 50 40912647 fail ≥ 52 319878688 fail
MANN a9 16 94 0.0005 16 94 0.0005
MANN a27 126 38252 6.92 126 38252 7.56
MANN a45 345 2852231 5480 345 2852231 9037
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Graph MCQ MaxCliqueDyn
name ω num. steps CPU time ω num. steps CPU time
p hat300-1 8 2137 0.006 8 2084 0.0055
p hat300-2 25 9944 0.0795 25 7611 0.063
p hat300-3 36 2519267 30.62 36 629972 9.1
p hat500-1 9 11275 0.043 9 10933 0.041
p hat500-2 36 515253 6.57 36 189060 2.81
p hat500-3 50 239705791 5683 50 25599649 739.16
p hat700-1 11 34229 0.17 11 27931 0.19
p hat700-2 44 4355991 87.49 44 1071470 25.4
p hat700-3 ≥ 57 486128224 fail 62 292408292 13583
p hat1000-1 10 202628 1.04 10 170203 0.9855
p hat1000-2 46 218545180 5189 46 30842192 859.44
p hat1000-3 ≥ 53 798989871 fail ≥ 59 481023263 fail
p hat1500-1 12 1283326 8.39 12 1138496 7.75
p hat1500-2 ≥ 55 494607640 fail ≥ 60 405328276 fail
p hat1500-3 ≥ 60 239190830 fail ≥ 69 389162339 fail
san200 0.7 1 30 1542 0.019 30 983 0.0125
san200 0.7 2 18 1577 0.011 18 1750 0.014
san200 0.9 1 70 268746 2.86 70 28678 0.4815
san200 0.9 2 60 489203 5.52 60 72041 1.48
san200 0.9 3 44 1037194 17.9 44 327704 6.66
san400 0.5 1 13 4182 0.0525 13 3026 0.0255
san400 0.7 1 40 135677 2.84 40 47332 0.8195
san400 0.7 2 30 71937 1.8 30 9805 0.286
san400 0.7 3 22 411539 5.8 22 366505 3.21
san400 0.9 1 100 41072828 2108 100 697695 66.43
san1000 15 224566 11.37 15 114537 1.56
sanr200 0.7 18 182244 0.924 18 104996 0.586
sanr200 0.9 42 41107366 583.26 42 6394315 102.66
sanr400 0.5 13 299625 1.34 13 248369 1.14
sanr400 0.7 21 89775740 602.9 21 37806745 287.78

calculations of the degrees and sorting are still performed, and this accounts

for the increased calculation time.

Notably, a discrepancy between times of our version of the MCQ algorithm

and times obtained by authors exist for random graphs. It seems that they

limited the maximum clique size within their random graphs. Although we

used a different computer, our times are directly comparable for the DIMACS

benchmark graphs, except for the san400_0.9_1 graph, in which the initial

order of vertices has a particular effect on the performance of the maximum

clique algorithms we tested. This may be because the last vertex, i.e., the
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400th vertex, is a member of the maximum clique. With minor modifications

to our sorting algorithm, the MCQ algorithm required 722 seconds and our

MaxCliqueDyn algorithm 53.44 seconds.

4 Conclusions

In this paper we describe an improved approximate coloring algorithm and

an algorithm for finding a maximum clique in an undirected graph. We show

that by applying tighter, more computationally expensive upper bounds on

a fraction of the search space, it is possible to reduce the time to find the

maximum clique. Our algorithm, which has not been fine-tuned, is consider-

ably faster than the original MCQ algorithm. A similar strategy is feasible

for other types of upper bounds [9], where advantage could be taken of a

trade-off between expensive computation and overall speed.
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